The major delayed rectifier in both Drosophila neurons and muscle is encoded by Shab.

نویسندگان

  • S Tsunoda
  • L Salkoff
چکیده

The delayed rectifier K+ current in Drosophila is similar to the classical delayed rectifier, originally described by Hodgkin and Huxley. Drosophila provides unique tools of mutant analysis to unambiguously determine the genetic identity of this native K+ current. We identified the Shab gene as the exclusive gene underlying delayed rectifier currents in both muscle and neurons. In muscles, a genetic mutation of Shab removes virtually all the whole cell delayed rectifier current (IK), while leaving unaltered the transient A-current encoded by the Shaker gene. In neurons, the Shab mutation also removes the bulk of IK, but leaves unaltered the transient A-current encoded by the Shal gene. Although most of the delayed rectifier current is the product of the Shab gene, the Shaw gene contributes a small "leak" current to most neurons and muscle cells. Thus, in contrast to the A-currents which are encoded by different genes in muscle and neuronal cell bodies (Shaker and Shal, respectively), the predominant IK in both muscle and neurons is encoded by the same gene (Shab). With the genetic identity of IK confirmed, all of the major K+ currents in embryonic Drosophila neurons and muscle are now known.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robustness of neural coding in Drosophila photoreceptors in the absence of slow delayed rectifier K+ channels.

Determining the contribution of a single type of ion channel to information processing within a neuron requires not only knowledge of the properties of the channel but also understanding of its function within a complex system. We studied the contribution of slow delayed rectifier K+ channels to neural coding in Drosophila photoreceptors by combining genetic and electrophysiological approaches ...

متن کامل

Unmasking of a novel potassium current in Drosophila by a mutation and drugs.

The delayed rectifier potassium current plays a critical role in cellular physiology. This current (I(K)) in Drosophila larvae is believed to be a single current. However, a likely null mutation in the Shab K(+) channel gene (Shab(3)) reduces I(K) but does not eliminate it. This raises a question as to whether or not the entire I(K) passes through channels encoded by one gene. Similarly, an inc...

متن کامل

A mouse brain homolog of the Drosophila Shab K+ channel with conserved delayed-rectifier properties.

We have cloned and expressed a mouse brain K+ channel that is the homolog of the Drosophila Shab K+ channel. Mouse and Drosophila Shab K+ channels (mShab and fShab, respectively) represent an instance of K+ channels and structurally related species that are both functionally and structurally conserved; most kinetic, voltage-sensitive, and pharmacological properties are similar for the 2 channel...

متن کامل

VOLTAGE-GATED K+ CHANNELS IN DROSOPHILA PHOTORECEPTORS Biophysical study of neural coding

The activity of neurons is critically dependent upon the suite of voltage-dependent ion channels expressed in their membranes. In particular, voltage-gated K+ channels are extremely diverse in their function, contributing to the regulation of distinct aspects of neuronal activity by shaping the voltage responses. In this study the role of K+ channels in neural coding is investigated in Drosophi...

متن کامل

Voltage Sensitivity and Gating Charge in Shaker and Shab Family Potassium Channels

The members of the voltage-dependent potassium channel family subserve a variety of functions and are expected to have voltage sensors with different sensitivities. The Shaker channel of Drosophila, which underlies a transient potassium current, has a high voltage sensitivity that is conferred by a large gating charge movement, approximately 13 elementary charges. A Shaker subunit's primary vol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 15 7 Pt 2  شماره 

صفحات  -

تاریخ انتشار 1995